Respuesta :
Answer:
[tex]\angle ABC=119^{\circ}[/tex]
Length of DC= 105 feet.
Explanation:
Given [tex]\angle BCD=61^{\circ}[/tex]
Right trapezoid means two angle are of 90 degree.
[tex]\angle BAD=90^{\circ}[/tex]
[tex]\angle ADC=90^{\circ}[/tex]
Draw a perpendicular BE and BE [tex]\parallel[/tex] AD .
Length of AB=80 feet
Length of BC=65 feet
Length of AD=60 feet
Length of DC= DE+ EC
Let length of EC= x
Quadrilateral ABED is a parallelogram
[tex]\therefore[/tex] AB[tex]\parallel[/tex]DE and AB= DE=80 feet
AD= BE=60 feet
Therefore, Length of DC= 80+x
In [tex]\triangle BEC[/tex]
[tex]BE^2+EC^2=BC^2[/tex]
By using pythogorous theorem
[tex]x^2+ (60)^2= (65)^2[/tex]
[tex]x^2+3600=4225[/tex]
[tex]x^2=625[/tex]
[tex]x=\sqrt{625}[/tex]
x=25
Therefore, length of DC= DE+EC=80+25=105 feet .
In quadrilateral ABCD
[tex]\angle ABC+\angle BCD+\angle ADC+\angle BAD=360^{\circ}[/tex]
By usnig property of sum of angles of quadrilateral
[tex]\angle ABC+61+90+90= 360[/tex]
[tex]\angle ABC= 360-241[/tex]
[tex]\angle ABC=119^{\circ}[/tex]
![Ver imagen lublana](https://us-static.z-dn.net/files/d82/fbf83f7eaba9228467076c3c9533a649.png)