Answer:
[tex]8\cdot 10^{-4} V[/tex]
Explanation:
First of all, let's find the cross-sectional area of the copper wire. The radius of the wire half the diameter:
[tex]r=\frac{d}{2}=\frac{1.28 cm}{2}=0.64 cm=6.4\cdot 10^{-3} m[/tex]
So the area is
[tex]A=\pi r^2 = \pi (6.4\cdot 10^{-3} m)^2=1.29\cdot 10^{-4} m^2[/tex]
Now we can calculate the resistance of the piece of copper wire between the bird's feet, with the formula:
[tex]R=\rho \frac{L}{A}[/tex]
where
[tex]\rho=1.68\cdot 10^{-8} \Omega m[/tex] is the resistivity of copper
[tex]L=4.12 cm=4.12 \cdot 10^{-2} m[/tex] is the length of the piece of wire
[tex]A=1.29\cdot 10^{-4} m^2[/tex] is the cross-sectional area
Substituting, we find
[tex]R=(1.68\cdot 10^{-8} m^2)\frac{4.12\cdot 10^{-2} m}{1.29\cdot 10^{-4} m^2}=5.4\cdot 10^{-6} \Omega[/tex]
And since we know the current in the wire, I=149 A, we can now find the potential difference across the body of the bird, by using Ohm's law:
[tex]V=IR=(149 A)(5.4\cdot 10^{-6} \Omega)=8\cdot 10^{-4} V[/tex]