Respuesta :

Answer:

[tex]x_1=5\\x_2=-3[/tex]

Step-by-step explanation:

You have the following quadratic equation given in the problem:

[tex]x^{2}-2x-3=12[/tex]

You must make the equation equal to zero, as following:

[tex]x^{2}-2x-3-12=0[/tex]

Add like terms:

 [tex]x^{2}-2x-15=0[/tex]

Now, to factor the equation, you must find two numbers whose sum is -2 and whose product is -15. Therefore, you have:

[tex](x-5)(x+3)=0\\x_1=5\\x_2=-3[/tex]

Answer:

x = -3 and x = 5

Step-by-step explanation:

x² − 2x − 3 = 12

x² − 2x − 3  - 12 = 0

x² − 2x − 15 = 0

Product = -15

sum = -2

Factors  are: 3, -5

So the equation becomes;

x² − 2x − 15 = 0

x² + 3x - 5x − 15 = 0

(x² + 3x) - (5x + 15) = 0

x(x + 3) - 5(x + 3) = 0

(x + 3)(x - 5) = 0

∴ (x + 3) = 0

    x = -3  

          or

   (x - 5) = 0

    x = 5

ACCESS MORE