Respuesta :
Answer:
= 50 trees
Step-by-step explanation:
Let F be the number of fruit per acre
F = (75 + x) × (20 - 3x)
F = 75 × 20 - 75 * 3x + 75 × x - 3x^2
F = 1500 - 225 x + 75x - 3x^2
F = 1500 - 150x - 3x^2
Factor out the 3 and complete the square (because this is a quadratic equation, we're going to find the vertex of the parabola):
F = -3x^2 - 150x + 1500
F = -3 * (x^2 + 50x - 500)
F = -3 * (x^2 + 2 * 25x + 25^2 - 25^2 - 500)
F = -3 * ((x + 25)^2 - 500 - 625)
F = -3 * ((x + 25)^2 - 625)
F = -3 * (x + 25)^2 + 3375
So the vertex is at (-25 , 3375)
75 - 25 = 50
The farmer should plant 50 trees per acre to maximize her yield
[tex]50[/tex] trees she should plant per acre to maximize her harvest.
[tex]N=(75+x)\times (20-3x)[/tex]
where [tex]N=[/tex]Number of fruits per acre
Solve the value of [tex]x[/tex]
[tex]N=75\times20-75\times3x+75\times x-3x^2[/tex]
[tex]N=1500-225x+74x-3x^2[/tex]
[tex]N=1500-150x-3x^2[/tex]
Rearrange the above equation,
[tex]N=-3x^2-150x+1500[/tex]
[tex]N=-3(x^2+50x-500)[/tex]
solve the above quadratic:
[tex]N=-3(x+25)^2+3375[/tex]
so the vertex is at [tex](-25,3375)[/tex]
[tex]75-25=50[/tex]
Hence ,[tex]50[/tex] trees she should plant per acre to maximize her harvest.
Learn more about quadratic equation here;
https://brainly.com/question/7044059?referrer=searchResults