Respuesta :

Answer: OPTION 2

Step-by-step explanation:

1. Calculate the missing leg of the right triangle shown in the figure, with Pythagorean Theorem:

[tex]x=\sqrt{(8ft)^{2}-(4\sqrt{3}ft)^{2}}=4ft[/tex]

3. The area of the triangle is:

[tex]A=\frac{4ft*4\sqrt{3}ft}{2}=8\sqrt{3}ft^2[/tex]

4. The area of the rectangle is:

[tex]A=10*4\sqrt{3}=40\sqrt{3}ft^{2}[/tex]

5. The total area is:

[tex]A_t=40\sqrt{3}+8\sqrt{3}=48\sqrt{3}ft^{2}[/tex]

ANSWER

[tex]Area=32 \sqrt{3} \: \: {ft}^{2} [/tex]


EXPLANATION

The area of a tra-pezoid is given by


[tex]Area= \frac{1}{2} (sum \:of \: parallel \: sides) \times height[/tex]

Let the base of the triangular portion be x.


From Pythagoras Theorem,

[tex] {x}^{2} + {(4 \sqrt{3})}^{2} = {8}^{2} [/tex]




[tex] {x}^{2} + 48 = 64[/tex]




[tex] {x}^{2}=64 - 48[/tex]



[tex] {x}^{2}=16[/tex]


[tex]x = \sqrt{16} [/tex]

[tex]x = 4 \: ft[/tex]


This implies that the shorter parallel side of the tra-pezoid

[tex] = 10 - 4=6 \: ft[/tex]


We now substitute into the formula to obtain,


[tex]Area= \frac{1}{2} (10 + 6) \times 4 \sqrt{3} \: \: {ft}^{2} [/tex]


[tex]Area= \frac{1}{2} (16) \times 4 \sqrt{3} \: \: {ft}^{2} [/tex]


[tex]Area=32 \sqrt{3} \: \: {ft}^{2} [/tex]
ACCESS MORE