Respuesta :
1) The homogeneous equation is
[tex]y''+4y'+4y=0[/tex]
with characteristic equation
[tex]r^2+4r+4=(r+2)^2=0\implies r=-2[/tex]
which means we have the characteristic solution
[tex]y_c=C_1e^{-2x}+C_2xe^{-2x}[/tex]
The functions that make up this solution are [tex]e^{-2x}[/tex] and [tex]xe^{-2x}[/tex].
2) Several ways to do this. Using the method of undetermined coefficients, we suppose the particular takes the form
[tex]y_p=a_3x^3+a_2x^2+a_1x+a_0[/tex]
so that its derivatives are
[tex]{y_p}'=3a_3x^2+2a_2x+a_1[/tex]
[tex]{y_p}''=6a_3x+2a_2[/tex]
Then substituting these into the ODE gives
[tex](6a_3x+2a_2)+4(3a_3x^2+2a_2x+a_1)+4(a_3x^3+a_2x^2+a_1x+a_0)=x^3[/tex]
[tex]4a_3x^3+(4a_2+12a_3)x^2+(4a_1+8a_2+6a_3)x+(4a_0+4a_1+2a_2)=x^3[/tex]
Matching up the coefficients gives us the system
[tex]\begin{cases}4a_3=1\\4a_2+12a_3=0\\4a_1+8a_2+6a_3=0\\4a_0+4a_1+2a_2=0\end{cases}\implies a_3=\dfrac14,a_2=-\dfrac34,a_1=\dfrac98,a_0=-\dfrac34[/tex]
so the particular solution would be
[tex]y_p=\dfrac{x^3}4-\dfrac{3x^2}4+\dfrac{9x}8-\dfrac34[/tex]
3) The general solution is simply
[tex]y=y_c+y_p[/tex]
Given the initial values [tex]y(0)=-6[/tex] and [tex]y'(0)=8[/tex], we get
[tex]-6=C_1-\dfrac34\implies C_1=-\dfrac{21}4[/tex]
[tex]8=-2C_1+C_2+\dfrac98\implies C_2=-\dfrac{29}8[/tex]
giving a particular solution to the IVP of
[tex]y=-\dfrac{21}4e^{-2x}-\dfrac{29}8xe^{-2x}+\dfrac{x^3}4-\dfrac{3x^2}4+\dfrac{9x}8-\dfrac34[/tex]
By finding complementary solution and particular solution we got the
the solution of IVP as [tex]y=-\frac{21}{4} e^{-2 x}-\frac{29}{8} x e^{-2 x}+\frac{x^{3}}{4}-\frac{3 x^{2}}{4}+\frac{9 x}{8}-\frac{3}{4}[/tex]
What is a differential equation?
An equation of function and their derivatives is called differential equation .
Given differential equation
[tex]y^{\prime \prime}+4 y^{\prime}+4 y=x^3[/tex]
Homogenous equation can be written as
[tex]y^{\prime \prime}+4 y^{\prime}+4 y=0[/tex]
characteristic equation of this differential equation can be written as
[tex]r^{2}+4 r+4=0\\\Rightarrow (r+2)^{2}=0\\\Rightarrow r=-2,-2[/tex]
Roots are repeating
Hence we can write complementary solution as
[tex]y_{C}=C_{1} e^{-2 x}+C_{2} x e^{-2 x}[/tex]
The functions that are making up this solution are [tex]$e^{-2 x}$[/tex] and [tex]$x e^{-2 x}$.[/tex]
Now particular solution
Let suppose that particular solution is of the form
[tex]y_{p}=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}[/tex]
So
[tex]&y_{p}^{\prime}=3 a_{3} x^{2}+2 a_{2} x+a_{1} \\\\&y_{p}^{\prime \prime}=6 a_{3} x+2 a_{2}[/tex]
Putting these values in given differential equation
[tex]&4 a_{3} x^{3}+\left(4 a_{2}+12 a_{3}\right) x^{2}+\left(4 a_{1}+8 a_{2}+6 a_{3}\right) x+\left(4 a_{0}+4 a_{1}+2 a_{2}\right)=x^{3}[/tex]
Now by comparing the coefficient of both sides
[tex]4 a_{3}=1 \ \ \Rightarrow a_{3}=\frac{1}{4}\\\\4 a_{2}+12 a_{3}=0 \ \ \Rightarrow 4 a_{2}+3=0 \ \ \ \ \Rightarrow a_{2}=\frac{-3}{4} \ \ \ \\\\\4 a_{1}+8 a_{2}+6 a_{3}=0 \ \ \ \Rightarrow 4 a_{1}-6+6 \times \frac{1}{4}=0 \\\\ \Rightarrow a_{1}=\frac{9}{8}\\\\4 a_{0}+4 a_{1}+2 a_{2}=0 \ \ \ \Rightarrow a_{0}=-3/4[/tex]
Hence we can write particular solution as
[tex]y_{p}=\frac{x^{3}}{4}-\frac{3 x^{2}}{4}+\frac{9 x}{8}-\frac{3}{4}[/tex]
We know general solution
[tex]y= y_{c}+ y_{p}[/tex]
[tex]y=e^{-2 x}+C_{2} x e^{-2 x}+\frac{x^{3}}{4}-\frac{3 x^{2}}{4}+\frac{9 x}{8}-\frac{3}{4}[/tex]
Now given initial values [tex]$y(0)=-6$[/tex] and [tex]y^{\prime}(0)=8[/tex]
So
[tex]y=-\frac{21}{4} e^{-2 x}-\frac{29}{8} x e^{-2 x}+\frac{x^{3}}{4}-\frac{3 x^{2}}{4}+\frac{9 x}{8}-\frac{3}{4}[/tex]
By finding complementary solution and particular solution we got the
the solution of IVP as [tex]y=-\frac{21}{4} e^{-2 x}-\frac{29}{8} x e^{-2 x}+\frac{x^{3}}{4}-\frac{3 x^{2}}{4}+\frac{9 x}{8}-\frac{3}{4}[/tex]