The [tex]X_i[/tex] are mutually independent, so that
[tex]P(X_1=a,X_2=b,X_3=c,X_4=d)=P(X_1=a)P(X_2=b)P(X_3=c)P(X_4=d)[/tex]
for any configuration of 0s and 1s [tex]a,b,c,d[/tex].
We obtain [tex]S=1[/tex] when exactly one of the [tex]X_i[/tex] are 1, and the other three are 0. There 4 possible ways of obtaining such an outcome, and they are pairwise disjoint. So
[tex]P(S=1)=P(X_1=1,X_2=0,X_3=0,X_4=0)+\cdots+P(X_1=0,X_2=0,X_3=0,X_4=1)[/tex]
Now,
[tex]P(X_1=1,X_2=0,X_3=0,X_4=0)=\dfrac15\dfrac35\dfrac25\dfrac15[/tex]
[tex]P(X_1=0,X_2=1,X_3=0,X_4=0)=\dfrac45\dfrac25\dfrac25\dfrac15[/tex]
[tex]P(X_1=0,X_2=0,X_3=1,X_4=0)=\dfrac45\dfrac35\dfrac35\dfrac15[/tex]
[tex]P(X_1=0,X_2=0,X_3=0,X_4=1)=\dfrac45\dfrac35\dfrac25\dfrac45[/tex]
[tex]\implies P(S=1)=\dfrac{6+16+36+96}{625}=\dfrac{154}{625}=0.2464[/tex]