Answer:
The scale factor is [tex]\frac{1}{3}[/tex]
Step-by-step explanation:
The given line segment AB has vertices A(-3,4) and B(1,-2).
The image has vertices [tex]A'(-1,\frac{4}{3})[/tex] and [tex]B'(\frac{1}{3},\frac{-2}{3})[/tex].
The mapping for a dilation with scale factor [tex]k[/tex] centered at the origin is
[tex](x,y)\to (kx,ky)[/tex]
Let the scale factor for the dilation be [tex]k[/tex].
Then,
[tex]A(-3,4)\to A'(-3k,4k)[/tex]
Comparing [tex]A'(-3k,4k)[/tex] to [tex]A'(-1,\frac{4}{3})[/tex], we have
[tex]-3k=-1[/tex]
[tex]\Rightarrow k=\frac{1}{3}[/tex]
Or
[tex]4k=\frac{4}{3}[/tex]
[tex]\Rightarrow k=\frac{4}{3}\times \frac{1}{4}[/tex].
[tex]\Rightarrow k=\frac{1}{3}[/tex].
We could have also used the second point to obtain the same result.