contestada

Line segment AB has vertices A(-3,4) and B(1,-2). A dilation, centered at the origin, is applied to AB. The image has vertices A’ (-1,4/3) and B’ (1/3,-2/3). What is the scale factor of the dilation?
1/6
1/3
3
6
(On the 2/3 fraction the negative sign is only by the 2)

Respuesta :

Answer:

The scale factor is [tex]\frac{1}{3}[/tex]

Step-by-step explanation:

The given line segment AB has vertices A(-3,4) and B(1,-2).

The image has vertices [tex]A'(-1,\frac{4}{3})[/tex] and [tex]B'(\frac{1}{3},\frac{-2}{3})[/tex].

The mapping for a dilation with scale factor [tex]k[/tex] centered at the origin is

[tex](x,y)\to (kx,ky)[/tex]

Let the scale factor for the dilation be [tex]k[/tex].

Then,

[tex]A(-3,4)\to A'(-3k,4k)[/tex]

Comparing [tex]A'(-3k,4k)[/tex] to  [tex]A'(-1,\frac{4}{3})[/tex], we have

[tex]-3k=-1[/tex]

[tex]\Rightarrow k=\frac{1}{3}[/tex]

Or

[tex]4k=\frac{4}{3}[/tex]

[tex]\Rightarrow k=\frac{4}{3}\times \frac{1}{4}[/tex].

[tex]\Rightarrow k=\frac{1}{3}[/tex].

We could have also used the second point to obtain the same result.

ACCESS MORE