Temperature of the same cup of water will rise by 6 °C unless it boils.
[tex]Q = c\cdot m \cdot \Delta T[/tex].
However, neither [tex]c[/tex] nor [tex]m[/tex] is given.
Adding [tex]Q = 125\;\text{kJ}[/tex] to this cup of water of mass [tex]m[/tex] rises its temperature by [tex]\Delta T = 1 \; \textdegree{}\text{C}[/tex].
In other words,
[tex]\begin{array}{lll}Q &=& c \cdot m \cdot \Delta T\\125\;\text{kJ} &=& c \cdot m \times (1 \; \textdegree{}\text{C})\end{array}[/tex]
[tex]c \cdot m = \dfrac{Q}{\Delta T} = \dfrac{125\; \text{kJ}}{1 \; \textdegree{}\text{C}}[/tex].
Both [tex]c[/tex] and [tex]m[/tex] are constant for the same cup of water unless the water boils. It's possible to reuse the value of [tex]c \cdot m[/tex] in the second calculation. Here's how:
[tex]\Delta T = \dfrac{Q}{c\cdot m} = \dfrac{750 \; \text{kJ}}{\dfrac{125\;\text{kJ}}{1\;\textdegree{}\text{C}}} = \dfrac{750}{125} \; \textdegree{}\text{C}} = 6 \; \textdegree{}\text{C}}[/tex].