Answer:
The coefficient of [tex]x^{4}[/tex] = 11760
Step-by-step explanation:
∵ The rule of expanded the binomial is :
[tex](a+b)^{n}=C_{0} ^{n} a^{n}b^{0}+C_{1}^{n}a^{n-1}b^{1}+C_{2}^{n}a^{n-2}b^{2}+.............[/tex]
∴ The Expanded of [tex](2x-7)^{6}[/tex] is:
[tex](2x-7)^{6}=C_{0}^{6}(2x)^{6}(-7)^{0}+C_{1}^{6}(2x)^{5}(-7)^{1}+C_{2}^{6}(2x)^{4}(-7)^{2}+..........[/tex]
[tex](2x-7)^{6}=(1)(64x^{6})(1)+(6)(32x^{5})(-7)+(15)(16x^{4})(-7)^{2}[/tex]
We will take the term of [tex]x^{4}[/tex] and find the coefficient of it
∴ The coefficient of [tex]x^{4}[/tex] = [tex](15)(16)(-7)^{2}=(15)(16)(49)=11760[/tex]