Respuesta :

Hello from MrBillDoesMath!

Answer:

25/4 = 6-1/4

Discussion:

Consider

(x+a)^2 = x^2 + (2a)x + a^2

The constant, a^2, needed to create a perfect square is (1/2) the coefficient of the x term squared. In our case, (1/2) 5 = 5/2 and the perfect square is

(x + 5/2)^2    =

x^2 + 2(5/2)x + (5/2)^2 =

x^2 + 5x + 25/4

As the question asks for the value of "c", the constant, the answer is 25/4,

Thank you,

MrB

Answer:

[tex]c=\frac{25}{4}[/tex]

Step-by-step explanation:

The given expression is

[tex]x^2+5x+c[/tex]                ...... (1)

If an expression is defined as [tex]x^2+bx[/tex], then we need to add [tex](\frac{b}{2})^2[/tex] in it, to make it perfect square.

In the expression [tex]x^2+5x[/tex], b=5.

[tex](\frac{b}{2})^2=(\frac{5}{2})^2=\frac{25}{4}[/tex]

Add [tex]\frac{25}{4}[/tex] in [tex]x^2+5x[/tex] to make it perfect square.

[tex]x^2+5x+\frac{25}{4}[/tex]      .... (2)

[tex]x^2+5x+(\frac{5}{2})^2[/tex]

[tex](x+\frac{5}{2})^2[/tex]                [tex][\because (a+b)^2=a^2+2ab+b^2][/tex]

On comparing (1) and (2) we get

[tex]c=\frac{25}{4}[/tex]

Therefore, [tex]x^2+5x+c[/tex] is a perfect square if [tex]c=\frac{25}{4}[/tex].

ACCESS MORE