Respuesta :
Hello from MrBillDoesMath!
Answer:
25/4 = 6-1/4
Discussion:
Consider
(x+a)^2 = x^2 + (2a)x + a^2
The constant, a^2, needed to create a perfect square is (1/2) the coefficient of the x term squared. In our case, (1/2) 5 = 5/2 and the perfect square is
(x + 5/2)^2 =
x^2 + 2(5/2)x + (5/2)^2 =
x^2 + 5x + 25/4
As the question asks for the value of "c", the constant, the answer is 25/4,
Thank you,
MrB
Answer:
[tex]c=\frac{25}{4}[/tex]
Step-by-step explanation:
The given expression is
[tex]x^2+5x+c[/tex] ...... (1)
If an expression is defined as [tex]x^2+bx[/tex], then we need to add [tex](\frac{b}{2})^2[/tex] in it, to make it perfect square.
In the expression [tex]x^2+5x[/tex], b=5.
[tex](\frac{b}{2})^2=(\frac{5}{2})^2=\frac{25}{4}[/tex]
Add [tex]\frac{25}{4}[/tex] in [tex]x^2+5x[/tex] to make it perfect square.
[tex]x^2+5x+\frac{25}{4}[/tex] .... (2)
[tex]x^2+5x+(\frac{5}{2})^2[/tex]
[tex](x+\frac{5}{2})^2[/tex] [tex][\because (a+b)^2=a^2+2ab+b^2][/tex]
On comparing (1) and (2) we get
[tex]c=\frac{25}{4}[/tex]
Therefore, [tex]x^2+5x+c[/tex] is a perfect square if [tex]c=\frac{25}{4}[/tex].