Respuesta :

Answer:

[tex]r=\sqrt{8}[/tex]

Step-by-step explanation:

The given equation is [tex]x^2+y^2=8[/tex]

To convert from rectangular coordinates to polar coordinates, we substitute

[tex]x=r\cos(\theta)[/tex] and [tex]y=r\sin(\theta)[/tex].

This implies that;

[tex](r\cos(\theta))^2+(r\sin(\theta))^2=8[/tex]

[tex](r^2\cos^2(\theta)+r^2\sin^2(\theta)=8[/tex]

Factor [tex]r^2[/tex] to get;

[tex]r^2(\cos^2(\theta)+\sin^2(\theta))=8[/tex]

Recall that; [tex]\cos^2(\theta)+\sin^2(\theta)=1[/tex]

[tex]\Rightarrow r^2(1)=8[/tex]

[tex]\Rightarrow r^2=8[/tex]

[tex]\Rightarrow r=\sqrt{8}[/tex]

Answer:

r = 8 sin θ is the polar equation