Graph each piecewise function. Then Identify the properties.
![Graph each piecewise function Then Identify the properties class=](https://us-static.z-dn.net/files/d0f/eed025ee2029aff6581ad0d092e0f04e.jpg)
Shown below
A piecewise-defined function is a function defined by two or more equations over a specified domain. From the figure, our piecewise function is:
[tex]\left \{ {{\frac{1}{2}(x+1)^2+1 \ if \ x \leq 1} \atop {(x-2)(x-4) \ if \ x>1}} \right.[/tex]
This function has been plotted below and we know some properties:
[tex]f(x)=\frac{1}{2}(x+1)^2+1[/tex] is the parabola in purple while [tex]g(x)=(x-2)(x-4)=x^2-6x+8[/tex] is the parabola in orange.