Perform the indicated operation. Assume all variables represent non-negative real numbers

[tex]\sqrt{2y^{2} } +y\sqrt{18}[/tex]

Respuesta :

Answer:

[tex]y\sqrt{2} + 3y\sqrt{2} = 4y\sqrt{2}[/tex]

Step-by-step explanation:

To add or subtract radicals, you need to simplify the radicals and then add the radicals

[tex]\sqrt{2y^2} + y\sqrt{18}[/tex]

First simplify [tex]\sqrt{2y^2}[/tex]

[tex]\sqrt{2y^2}[/tex]

[tex]\sqrt{2y^2} = \sqrt{2} \ \sqrt{y^2}[/tex]

[tex]\sqrt{2} \ \sqrt{y^2}[/tex]

[tex]\sqrt{y^2} = y[/tex]

[tex]\sqrt{2} \ y[/tex]

OR

[tex]y\sqrt{2} [/tex]

Second simplify  [tex]\sqrt{18}[/tex]

To simplify  [tex]y\sqrt{18}[/tex] you need to find two radicals that =  [tex]\sqrt{18}[/tex] when you multiply them. One radical needs to be a perfect square and the other needs to be a non perfect square.

[tex]\sqrt{18}[/tex]

[tex]\sqrt{9} * \sqrt{2} = \sqrt{18}[/tex]

[tex]\sqrt{9} * \sqrt{2}}[/tex]

[tex]\sqrt{9} \sqrt{2}}[/tex]

[tex]3 \sqrt{2}}[/tex]

[tex]3 y\sqrt{2}}[/tex]

Now put it all together

[tex]y\sqrt{2} + 3y\sqrt{2} = 4y\sqrt{2}[/tex]

ACCESS MORE