What is the total surface area of the code?
A) 273 cm2
B) 224 cm2
C) 147 cm2
D) 175 cm2
![What is the total surface area of the code A 273 cm2 B 224 cm2 C 147 cm2 D 175 cm2 class=](https://us-static.z-dn.net/files/d06/d10030fc10113661e6dcd1b72102f579.png)
The answer is: None of the options.
The correct answer is: [tex]703.69cm^{2}[/tex]
The total surface area of the cone is equal to:
[tex]TotalArea=BaseArea+LateralArea[/tex]
Calculations:
tex]BaseArea=\pi*r^{2}=\pi*7^{2}=153.94cm^{2}[/tex]
[tex]LateralArea=BasePerimeter*SlantHeight/2\\BasePerimeter=2*\pi*r=2*\pi*7=43.98cm\\SlantHeight=\sqrt{height^{2}+radius^{2} }=\sqrt{576+49}=\sqrt{625}=25[/tex]
[[tex]LateralArea=43.98*\frac{25}{2}=549.75cm^{2}[/tex]
So,
[tex]TotalArea=153.94cm^{2} +549.75cm^{2}=703.69cm^{2}[/tex]
Have a nice day!
Answer:
S.A = 704 cm^2
Step-by-step explanation:
We know that the formula to find the surface area of a cone:
S.A = [tex]\pi r (r + \sqrt{h^2 + r^2} )[/tex], where "r" is the radius and "h" is the height.
Given: r = 7 cm and h = 24 cm. The value of π = 22/7
Now plug in the given values in the above formula, we get
S.A = [tex]= \frac{22}{7} *7 (7 + \sqrt{24^{2}+ 7^2 } )[/tex]
S.A = [tex]22(7 + \sqrt{576 + 49} )[/tex]
S.A = [tex]22(7 + \sqrt{625} )[/tex]
S.A = 22( 7 + 25)
S.A = 22(32)
S.A = 704 cm^2
The surface area of the cone is S.A = 704 cm^2.