Respuesta :

We can divide both sides by the expression on either side:

[tex]|3x+1|=|2x-7|\implies\dfrac{|3x+1|}{|2x-7|}=1\implies\left|\dfrac{3x+1}{2x-7}\right|=1[/tex]

Then we use the definition of absolute value:

[tex]|x|:=\begin{cases}x&\text{if }x\ge0\\-x&\text{if }x<0\end{cases}[/tex]

So we have two possible cases:

1) If [tex]\dfrac{3x+1}{2x-7}\ge0[/tex], then [tex]\left|\dfrac{3x+1}{2x-7}\right|=\dfrac{3x+1}{2x-7}[/tex], and solving the equation gives

[tex]\dfrac{3x+1}{2x-7}=1\implies3x+1=2x-7\implies x=-8[/tex]

2) If [tex]\dfrac{3x+1}{2x-7}<0[/tex], then [tex]\left|\dfrac{3x+1}{2x-7}\right|=-\dfrac{3x+1}{2x-7}[/tex], and

[tex]-\dfrac{3x+1}{2x-7}=1\implies\dfrac{3x+1}{2x-7}=-1\implies3x+1=-2x+7\implies5x=6[/tex]

[tex]\implies x=\dfrac65[/tex]

ACCESS MORE