Respuesta :
Answer: [tex]5(1,215x)^{\frac{1}{2}}[/tex]
Step-by-step explanation:}
To solve this problem you can apply the proccedure shown below:
1. By definition, you have that:
[tex]\sqrt[n]{a}=a^{{\frac{1}{n}}[/tex]
2. Therefore, keeping the above on mind, you can find an equivalent expression of [tex]5\sqrt{1,215x}[/tex] as following:
[tex]5\sqrt{1,215x}=5(1,215x)^{\frac{1}{2}}[/tex]
3. Then, an equivalent expression is:
[tex]5(1,215x)^{\frac{1}{2}}[/tex]
Answer with explanation
The expression whose equivalent expression we have to find is:
[tex]\Rightarrow 5 \sqrt{1215 x}\\\\\text{Following are the equivalent expression}\\\\1.\rightarrow 5 \sqrt{243 \times 5\times x}\\\\2.\rightarrow 5 \times\sqrt{3\times 3\times 3\times 3\times 3\times 5 \times x}\\\\3.\rightarrow 5 \times 3\times 3 \times \sqrt{15 x}\\\\ 4.\rightarrow 45 \sqrt{15 x}\\\\5. \rightarrow 45 \times (15)^{\frac{1}{2}} \times x^{\frac{1}{2}[/tex]