Answer:
The height of the box is [tex]13\ in[/tex]
Step-by-step explanation:
we know that
The surface area of the triangular prism is equal to
[tex]SA=2B+PH[/tex]
where
B is the area of the base
P is the perimeter of the base
H is the height of the box
Find the area of the base B
[tex]B=\frac{1}{2}bh[/tex]
we have
[tex]b=9\ in[/tex]
[tex]h=7.8\ in[/tex]
substitute
[tex]B=\frac{1}{2}(9)(7.8)=35.1\ in^{2}[/tex]
Find the perimeter of the base
[tex]P=3b=3*9=27\ in[/tex]
Find the height of the box
[tex]SA=B+PH[/tex]
we have
[tex]SA=421.2\ in^{2}[/tex]
[tex]B=35.1\ in^{2}[/tex]
[tex]P=27\ in[/tex]
substitute and solve for H
[tex]421.2=2(35.1)+27H[/tex]
[tex]27H=351[/tex]
[tex]H=351/27=13\ in[/tex]