Respuesta :

Answer:

C) [tex]\frac{x+3}{x}[/tex]

Step-by-step explanation:

The given expression is

[tex]\frac{\frac{x}{x-3} }{\frac{x^2}{x^2-9} }[/tex]

We rewrite to obtain:

[tex]\frac{x}{x-3} \div \frac{x^2}{x^2-9}[/tex]

Multiply the first fraction by the reciprocal of the second to get;

[tex]\frac{x}{x-3} \times \frac{x^2-9}{x^2}[/tex]

Factor the numerator using difference two squares;

[tex]\frac{x}{x-3} \times \frac{x^2-3^2}{x^2}[/tex]

[tex]\frac{x}{x-3} \times \frac{(x-3)(x+3)}{x^2}[/tex]

Cancel out the common factors to get;

[tex]\frac{1}{1} \times \frac{(1)(x+3)}{x}[/tex]

This simplifies to;

[tex]\frac{x+3}{x}[/tex]

Answer:

c

Step-by-step explanation: