Respuesta :
Answer:
C) [tex]\frac{x+3}{x}[/tex]
Step-by-step explanation:
The given expression is
[tex]\frac{\frac{x}{x-3} }{\frac{x^2}{x^2-9} }[/tex]
We rewrite to obtain:
[tex]\frac{x}{x-3} \div \frac{x^2}{x^2-9}[/tex]
Multiply the first fraction by the reciprocal of the second to get;
[tex]\frac{x}{x-3} \times \frac{x^2-9}{x^2}[/tex]
Factor the numerator using difference two squares;
[tex]\frac{x}{x-3} \times \frac{x^2-3^2}{x^2}[/tex]
[tex]\frac{x}{x-3} \times \frac{(x-3)(x+3)}{x^2}[/tex]
Cancel out the common factors to get;
[tex]\frac{1}{1} \times \frac{(1)(x+3)}{x}[/tex]
This simplifies to;
[tex]\frac{x+3}{x}[/tex]