Solve for x in the equation
![Solve for x in the equation class=](https://us-static.z-dn.net/files/de5/63de2a9422ef75204baeb6f53ae6f9cb.png)
Answer:
Option d is correct
Step-by-step explanation:
[tex]x^2 + 11x + \frac{121}{4} = \frac{125}{4}[/tex]
[tex]x^2 + 11x + \frac{121}{4} - \frac{125}{4} = 0 [/tex]
[tex]x^2 + 11x + \frac{121-125}{4} = 0 [/tex]
[tex]x^2 + 11x - 1 = 0 [/tex]
Using quadratic formula
[tex]x = \frac{-b +- \sqrt{b^2-4ac}}{2a}[/tex]
from the above equation a = 1 b = 11 c = -1 put these values in the above formula
[tex]x = \frac{-11 +- \sqrt{11^2-4(1)(-1)}}{2(1)}[/tex]
[tex]x = \frac{-11 +- \sqrt{121+4}}{2}[/tex]
[tex]x = \frac{-11 +- \sqrt{125}}{2}[/tex]
[tex]x = \frac{-11 +- \sqrt{5*25}}{2}[/tex]
[tex]x = \frac{-11 +- 5\sqrt{5}}{2}[/tex]
[tex]x = \frac{-11}{2} +- \frac{5\sqrt{5}}{2}[/tex]
Answer:
Choice D is correct answer.
Step-by-step explanation:
We have given a quadratic equation.
x²+11x+121/4 = 125/4
x²+11x+121/4-125/4 = 0
x²+11x+(121-125)/4 = 0
x²+11x+(-4)/4 =0
x²+11x-1 = 0
ax²+bx+c = 0 is general quadratic equation.
Comparing above equations, we have
a = 1 , b = 11 and c = -1
x = (-b±√b²-4ac) / 2a is quadratic formula to solve equation.
x = (-11±√(11)²-4(1)(-1) ) /2(1)
x = (-11±√121+4) / 2
x = (-11±√125) / 2
x = (-11±5√5) / 2
x = -11/2±5√5/2 is the solution of given quadratic equation.