Check the forward differences:
-1 - 1 = -2
-7 - (-1) = -6
-25 - (-7) = -18
Notice how the differences appear to follow a geometric progression with common ratio 3. So if [tex]a_n[/tex] denotes the [tex]n[/tex]th term in the given sequence, we seem to have
[tex]a_2-a_1=-2\cdot3^0[/tex]
[tex]a_3-a_2=-2\cdot3^1[/tex]
[tex]a_4-a_3=-2\cdot3^2[/tex]
so that the general pattern for [tex]n>1[/tex] would be
[tex]a_n-a_{n-1}=-2\cdot3^{n-2}[/tex]
Then the sequence is given recursively by
[tex]a_n=\begin{cases}1&\text{for }n=1\\a_{n-1}-2\cdot3^{n-2}&\text{for }n>1\end{cases}[/tex]
The first 10 terms in the sequence would be
1, -1, -7, -25, -79, -241, -727, -2185, -6559, -19681