I'm assuming [tex]\vec b[/tex] is the vector field I've suggested in my comment,
[tex]\vec b=(2xy,z^2y,3x^2y)[/tex]
Parameterize the given surface - call it [tex]\mathcal S[/tex] - by
[tex]\vec r(u,v)=(u,v,1)[/tex]
with [tex]0\le u\le1[/tex] and [tex]0\le v\le2[/tex]. The flux is given by the surface integral
[tex]\displaystyle\iint_{\mathcal S}\vec b\cdot\mathrm d\vec S=\iint_{\mathcal S}\vec b\cdot\vec n\,\mathrm dS[/tex]
where the surface element is
[tex]\vec n\,\mathrm dS=\dfrac{\vec r_u\times\vec r_v}{\|\vec r_u\times\vec r_v\|}\|\vec r_u\times\vec r_v\|\,\mathrm du\,\mathrm dv=(\vec r_u\times\vec r_v)\,\mathrm du\,\mathrm dv[/tex]
(or use [tex]\vec r_v\times\vec r_u[/tex], depending on the orientation of the surface)
We have
[tex]\vec r_v\times\vec r_u=(0,0,1)[/tex]
[tex]\vec b=(2uv,v,3u^2v)[/tex]
so the surface integral reduces to
[tex]\displaystyle\iint_{\mathcal S}\vec b\cdot\mathrm d\vec S=\int_{u=0}^{u=1}\int_{v=0}^{v=2}3u^2v\,\mathrm dv\,\mathrm du=2[/tex]
(or possibly -2, again depending on the orientation of [tex]\mathcal S[/tex])