Respuesta :

Answer:

sum of the first 12 terms of the sequence. 1, -4, -9, -14, . . = -318

Step-by-step explanation:

The given AP is,

1, -4, -9, -14, . . .

first term a = 1,

common difference d = -4 - 1 = -5

number of terms  n = 12

Equation:

Sum of n terms of AP, S₁₂ = n/2[2a + (n - 1)d]

S₁₂ = 12/2[(2*1) + (12 - 1)*(-5)]

S₁₂ = 6[2 + (11*(-5))]

S₁₂ = 6[2 - 55] = 6*(-53) = -318

Therefore sum of the first 12 terms of the sequence. 1, -4, -9, -14, . . = -318

Answer:

The sum of first 12 terms of the sequence. 1, -4, -9, -14, . .  is -318.

Step-by-step explanation:

Given sequence  1, -4, -9, -14, . . .

We have to find the sum of first 12 terms of the sequence. 1, -4, -9, -14, . .

Consider  the given sequence 1, -4, -9, -14, . . .

[tex]a_1=1 ,a_2=-4,a_3=-9[/tex]

First calculate the common difference (d)

[tex]a_2-a_1=-4-1=-5\\a_3-a_2=-9+4=-5[/tex]

Thus, common difference is -5

We know sum of terms in an Arithmetic progression is given by,

[tex]S_n=\frac{n}{2}(2a+(n-1)d)[/tex]

where n is number of terms ,

a = first term

d = common difference

Here, n = 12 , a= 1 , d = -5

[tex]S_{12}=\frac{12}{2}(2(1)+(12-1)(-5))[/tex]

Solving , we get,

[tex]S_{12}=6(2+11(-5))[/tex]

[tex]S_{12}=6(2-55)[/tex]

[tex]S_{12}=6(-53)[/tex]

[tex]S_{12}=-318[/tex]

Thus, the sum of first 12 terms of the sequence. 1, -4, -9, -14, . .  is -318.

ACCESS MORE