which of the following is equivalent to the expression (9x^2y^3)(12x^-3y^5)(2xy)?
![which of the following is equivalent to the expression 9x2y312x3y52xy class=](https://us-static.z-dn.net/files/def/7cceb6ae23c6af22357a96aa91b8e10d.png)
Answer:
[tex]\large\boxed{(9x^2y^3)(12x^{-3}y^5)(2xy)=216y^9}\to\boxed{B.}[/tex]
Step-by-step explanation:
[tex](9x^2y^3)(12x^{-3}y^5)(2xy)=(9\cdot12\cdot2)(x^2x^{-3}x)(y^3y^5y)\\\\\text{Use}\ a^n\cdot a^m=a^{n+m}\\\\=216x^{2+(-3)+1}y^{3+5+1}=216x^0y^9\\\\\text{Use}\ a^0=1\ \text{for any value of}\ a\ \text{except 0}\\\\=216y^9[/tex]
Answer:
[tex]=216y^9[/tex]
Step-by-step explanation:
the expression is:
[tex](9x^2y^3)(12x^{-3}y^5)(2xy)[/tex]
the first step is to multiply all the coefficients:
[tex]9*12*2=216[/tex]
and as for the variables, to multiply them we must add the exponents, that is, the result for x will be:
[tex]x^{2-3+1}=x^0=1[/tex]
so there will be no x in our result.
adding the exponents for the y variable:
[tex]y^{3+5+1}=y^9[/tex]
The result is the multiplied coefficients and the variables after we add the exponents they in the original expression:
[tex](9x^2y^3)(12x^{-3}y^5)(2xy)[/tex][tex]=216y^9[/tex]
which is option B