Respuesta :

Answer: [tex]6x^{4}+27x^{3}-18x^{2}[/tex]

Step-by-step explanation:

To solve this problem you must apply the proccedure shown below:

- You must apply the Distributive property: multiply each term inside of the parentheses by 3x².

- You need to remember the exponents properties. When you have to powers with equal base, you must add the exponents.

Then, you obtain:

[tex]3x^{2}(2x^{2}+9x-6)\\6x^{4}+27x^{3}-18x^{2}[/tex]

Answer:

The correct answer is 6x⁴ + 27x³ - 18x²

Step-by-step explanation:

The given expression is,

3x^2(2x^2+9x-6)

⇒ 3x² (2x² + 9x - 6)

To find the product 3x² (2x² + 9x - 6)

Multiplying 3x² into all the terms inside the bracket.

3x² (2x² + 9x - 6) = (3x² * 2x² ) + (3x² * 9x)   - (3x² * 6)

 = 6x⁴ + 27x³ - 18x²

Therefore the simplified form of  3x² (2x² + 9x - 6) is 6x⁴ + 27x³ - 18x²

Therefore the correct answer is 6x⁴ + 27x³ - 18x²

ACCESS MORE