Answer:
The dimensions of the inside rectangle are
[tex]Length=4\ ft[/tex]
[tex]Width=10\ ft[/tex]
Step-by-step explanation:
we know that
The area of the shaded region is equal to the area of the outside rectangle minus the area of the inside rectangle
see the attached figure to better understand the problem
so
[tex]103=(3x-2)(x+6)-(x-1)(2x)\\ \\103=(3x^{2}+18x-2x-12)-(2x^{2}-2x)\\ \\103=3x^{2}+16x-12-2x^{2}+2x\\ \\103=x^{2}+18x-12\\ \\ x^{2}+18x-115=0[/tex]
using a graphing calculator
the solution is
[tex]x=5\ ft[/tex]
see the attached figure
Find the dimensions of the inside rectangle
[tex]Length=(5-1)=4\ ft[/tex]
[tex]Width=2(5)=10\ ft[/tex]