Respuesta :
Answer:
(-4,-1) U (-1,1]
Step-by-step explanation:
x^2-1/x^2+5x+4< or equal to 0
[tex]\frac{x^2-1}{x^2+5x+4} \leq 0[/tex]
LEts factor top and bottom
[tex]x^2+5x+4= (x+4)(x+1)[/tex]
Now we factor x^2-1 using [tex]a^2-b^2=(a+b)(a-b)[/tex]
[tex]x^2-1^2=(x+1)(x-1)[/tex]
now we find the x values that makes the denominator 0
[tex](x+4)(x+1)=0[/tex]
x+4=0, x=-4
x+1=0, x=-1
[tex]\frac{(x+1)(x-1) }{(x+4)(x+1)} =0[/tex]
multiply the denominator on both sides
cancel out x+1 at the top and bottom
x-1 =0, x=1
We got 3 x values
x=-4, -1, 1
using the x values we make 4 intervals
(-∞, -4), (-4,-1) (-1,1] and [1,∞)
LEts pick a random number from each interval and check with the inequality
(-∞, -4) pick -5
[tex]\frac{(-5)^2-1}{(-5)^2+5(-5)+4} \leq 0[/tex]
[tex]\frac{24}{4} \leq 0[/tex] false
(-4,-1) pick -3
[tex]\frac{(-3)^2-1}{(-3)^2+5(-3)+4} \leq 0[/tex]
[tex]\frac{8}{-1} \leq 0[/tex] True
(-1,1] pick 0
[tex]\frac{(0)^2-1}{(0)^2+5(0)+4} \leq 0[/tex]
[tex]\frac{-1}{4} \leq 0[/tex] True
[1,∞) pick -2
[tex]\frac{(2)^2-1}{(2)^2+5(2)+4} \leq 0[/tex]
[tex]\frac{3}{18} \leq 0[/tex] false
solution are the intervals that satisfies our inequality
(-4,-1) U (-1,1]