Respuesta :

Answer: 1) D. x = -0.3 and y = -3.4

2) B. [tex]y=\frac{4}{x+2}+3[/tex]

Step-by-step explanation:

1) Given equation,

[tex]y=\frac{-1.6}{x+0.3}-3.4[/tex]

For vertical asymptote,

[tex]y\rightarrow \infty[/tex]

It is possible for the given function, if the denominator = 0

⇒ x + 0.3 = 0

x = -0.3

Now, for horizontal asymptote,

[tex]x\rightarrow \infty[/tex]

By substituting this in the given equation of the function,

We get,

[tex]y=\frac{-1.6}{\infty+0.3}-3.4[/tex]

[tex]y=\frac{-1.6}{\infty}-3.4[/tex]

[tex]y=0-3.4[/tex]

[tex]y=-3.4[/tex]

Hence, the vertical and horizontal asymptote of the given function are x = -3.0 and y = -3.4 respectively.

Option D is correct.

2) If a function is defined as,

(x-h)(y-k) = a

Then (h,k) be the center of this function,

In option A,

Given function is,

[tex]y = \frac{4}{x+3}+2[/tex]

[tex]\implies y-2 = \frac{4}{x+3}[/tex]

[tex]\implies (x+3)(y-2) = 4[/tex]

⇒ The center of the function is (-3,2)

In option B,

Given function is,

[tex]y = \frac{4}{x+2}+3[/tex]

[tex]\implies y-3 = \frac{4}{x+2}[/tex]

[tex]\implies (x+2)(y-3) = 4[/tex]

The center of the function is (-2,3)

In option C,

Given function is,

[tex]y = \frac{4}{x-2}+3[/tex]

[tex]\implies y-3 = \frac{4}{x-2}[/tex]

[tex]\implies (x-2)(y-3) = 4[/tex]

⇒ The center of the function is (2,3)

In option D,

Given function is,

[tex]y = \frac{4}{x+3}-2[/tex]

[tex]\implies y+2 = \frac{4}{x+3}[/tex]

[tex]\implies (x+3)(y+2) = 4[/tex]

⇒ The center of the function is (-3,-2)

⇒ Thus, by the above explanation the function in option B has the center of (-2,3)