Answer:
4
Step-by-step explanation:
Step 1: find (r- s) or r(x) - s(x)
r(x) - s(x) = 3x - 1 - (2x + 1)
r(x) - s(x) = 3x - 1 - 2x - 1 (distribute the -1 to 2x and 1)
r(x) - s(x) = x - 2 (combine like terms, 3x + (-2x) = x, -1 + (-1) = -2)
so r(x) - s(x) = x - 2, or (r - s)(x) = x - 2
Step 2: Plug in 6 to 'x' and find (r - s)(x)
(r - s)(6) = 6 - 2 = 4