[tex]493 \; \text{W}\cdot \text{m}^{-2}[/tex].
The Stefan-Boltzmann Law gives the energy radiation per unit area of a black body:
[tex]\dfrac{P}{A} = \sigma \cdot T^{4}[/tex]
where,
[tex]\sigma = 5.67 \times 10^{-8} \;\text{W}\cdot \text{m}^{-2} \cdot \text{K}^{-4}[/tex].
[tex]T = 90 \; \textdegree{}\text{F} = (\dfrac{5}{9} \cdot (90-32) + 273.15) \; \text{K} = 305.372 \; \text{K}[/tex].
[tex]\dfrac{P}{A} = \sigma \cdot T^{4} = 5.67 \times 10^{-8} \times 305.372^{4} = 493\; \text{W}\cdot \text{m}^{-2}[/tex].
Keep as many significant figures in [tex]T[/tex] as possible. The error will be large when [tex]T[/tex] is raised to the power of four. Also, the real value will be much smaller than [tex]493\; \text{W}\cdot \text{m}^{-2}[/tex] since the emittance of a human body is much smaller than assumed.