Answer:
Option C. Maximum at [tex](3,23)[/tex]
Step-by-step explanation:
we have
[tex]f(x)=-2x^{2}+12x+5[/tex]
Completing the square
[tex]f(x)-5=-2x^{2}+12x[/tex]
[tex]f(x)-5=-2(x^{2}-6x)[/tex]
[tex]f(x)-5-18=-2(x^{2}-6x+9)[/tex]
[tex]f(x)-23=-2(x^{2}-6x+9)[/tex]
[tex]f(x)-23=-2(x-3)^{2}[/tex]
[tex]f(x)=-2(x-3)^{2}+23[/tex] --------> quadratic equation in vertex form
The vertex is the point [tex](3,23)[/tex]
This is a vertical parabola open downward
therefore
The vertex is a maximum