The extensions of the legs AB and CD of a trapezoid ABCD intersect at point E. Find the lengths of the altitude of △AED drawn to the base AD, if BC=7cm, AD=21cm, and the length of an altitude of a trapezoid is 3cm.
![The extensions of the legs AB and CD of a trapezoid ABCD intersect at point E Find the lengths of the altitude of AED drawn to the base AD if BC7cm AD21cm and t class=](https://us-static.z-dn.net/files/d21/f9d2ff617ddb01a17f25960edd1e4b9b.png)
let's call G the intersection point of EF & BC.
according to the thales' theorem:
[tex] \frac{eg}{ef} = \frac{bc}{ad} [/tex]
and EF= EG+GF=EG+3
[tex] \frac{eg}{eg + 3} = \frac{7}{21} [/tex]
[tex]21eg = 7eg + 21[/tex]
[tex]14eg = 21[/tex]
[tex]eg = \frac{21}{14} = \frac{3}{2} = 1.5[/tex]
length of the altitude of △AED=EF
EF=EG+GF=1.5+3=4.5