Respuesta :

Answer:

[tex]f = 5 \times 10^{14} \; \text{Hz}[/tex] if the wavelength is observed in vacuum.

Step-by-step explanation:

[tex]f = \dfrac{c}{\lambda}[/tex],

where

  • [tex]f[/tex] is the frequency of this beam of light,
  • [tex]\lambda[/tex] is its wavelength, and
  • [tex]c[/tex] is the speed of light.

[tex]c \approx 3.00 \times 10^{8} \; \text{m}\cdot \text{s}^{-1}[/tex] in vacuum and in the earth atmosphere. However, the value of [tex]c[/tex] will be smaller in other media.

[tex]1 \; \text{nm} = 1 \times 10^{-9} \; \text{m}[/tex].

  • [tex]\text{m} \cdot \text{s}^{-1}[/tex] is the SI unit for speed.
  • [tex]\text{m}[/tex] is the SI unit for distance.

[tex]\lambda = 600 \; \text{nm} = 600 \times 10^{-9} \; \text{m} = 6.00 \times 10^{-7} \;\text{m}[/tex].

[tex]f = \dfrac{c}{\lambda} = \dfrac{3.00 \times 10^{8} \; \text{m}\cdot \text{s}^{-1}}{6.00 \times 10^{-7}\; \text{m}} = 5 \times 10^{14} \; \text{s}^{-1}[/tex].

One [oscillation] in each second is the same as one Hertz [tex]\text{Hz}[/tex]. In other words, [tex]1 \; \text{s}^{-1} = 1 \; \text{Hz}[/tex].

[tex]f = 5 \times 10^{14} \; \text{s}^{-1} =5 \times 10^{14} \; \text{Hz}[/tex].