Answer:
[tex]f = 5 \times 10^{14} \; \text{Hz}[/tex] if the wavelength is observed in vacuum.
Step-by-step explanation:
[tex]f = \dfrac{c}{\lambda}[/tex],
where
[tex]c \approx 3.00 \times 10^{8} \; \text{m}\cdot \text{s}^{-1}[/tex] in vacuum and in the earth atmosphere. However, the value of [tex]c[/tex] will be smaller in other media.
[tex]1 \; \text{nm} = 1 \times 10^{-9} \; \text{m}[/tex].
[tex]\lambda = 600 \; \text{nm} = 600 \times 10^{-9} \; \text{m} = 6.00 \times 10^{-7} \;\text{m}[/tex].
[tex]f = \dfrac{c}{\lambda} = \dfrac{3.00 \times 10^{8} \; \text{m}\cdot \text{s}^{-1}}{6.00 \times 10^{-7}\; \text{m}} = 5 \times 10^{14} \; \text{s}^{-1}[/tex].
One [oscillation] in each second is the same as one Hertz [tex]\text{Hz}[/tex]. In other words, [tex]1 \; \text{s}^{-1} = 1 \; \text{Hz}[/tex].
[tex]f = 5 \times 10^{14} \; \text{s}^{-1} =5 \times 10^{14} \; \text{Hz}[/tex].