Respuesta :

If your question is :
[tex] \frac{4}{7^3} [/tex]

Then the answer is:
[tex] \frac{4}{7*7*7} = \frac{4}{343} [/tex]

If your question is:
[tex] (\frac{4}{7}) ^{3}[/tex]

Then the answer is:
[tex] \frac{4*4*4}{7*7*7} = \frac{64}{343} [/tex]

Answer:

[tex]\frac{64}{343}[/tex]

Step-by-step explanation:

The given expression is

[tex](\frac{4}{7})^3[/tex]

We need to find the simplified form of the given expression.

Using the distributive power property of exponent the given expression can be rewritten as

[tex](\frac{4}{7})^3=\frac{4^3}{7^3}[/tex]           [tex][\because(\frac{a}{b})^x=\frac{a^x}{b^x}][/tex]

In can be written as

[tex](\frac{4}{7})^3=\frac{4\times 4\times 4}{7\times 7\times 7}[/tex]

On further simplification we get

[tex](\frac{4}{7})^3=\frac{64}{343}[/tex]

Therefore the simplified form of the given expression is [tex]\frac{64}{343}[/tex].

ACCESS MORE