The given diagram shows the parts of a right triangle with an altitude to the hypotenuse. Using the two given measures, find the other four.
![The given diagram shows the parts of a right triangle with an altitude to the hypotenuse Using the two given measures find the other four class=](https://us-static.z-dn.net/files/d39/9773d37c0960a972d8ad4f7226e43469.jpg)
The value of h, is 4, [tex]\rm s_2[/tex] is 2, and the value of [tex]\rm u_1[/tex] and [tex]\rm u_2[/tex] is [tex]2\sqrt{2}[/tex].
Given
The given diagram shows the parts of a right triangle with an altitude to the hypotenuse.
To solve this problem, we have to use some basic formulas in a right-angle triangle such as trigonometric ratios and Pythagoreans theorem.
[tex]\rm h=s_1+s_2\\\\ s_1=2\\\\ a=2[/tex]
On the top of the triangle, we have another right-angle divided into two. This makes each side equal 90/2 = 45 degrees.
Using the length of a, we can solve for u1 or u2 using the Pythagorean theorem.
[tex]\rm u_1^2=s_1^2+a^2\\\\ u_1^2=2^2+2^2\\\\ u_1^2=4+4\\\\ u_1^2=8\\\\ u_1=2\sqrt{2}[/tex]
Then,
The value of h, is;
[tex]\rm u_1=\sqrt{s_1 \times h}\\\\2\sqrt{2}=\sqrt{2h} \\\\\text{squaring on both sides}\\\\4\times 2=2h\\\\h=\dfrac{8}{2}\\\\h=4[/tex]
Then,
The value of [tex]\rm s_1[/tex] is;
[tex]\rm h=s_1+s_2\\\\ 4=2+s_2\\\\s_2=4-2\\\\s_2=2[/tex]
The value of [tex]\rm u_2[/tex] is;
[tex]\rm u_2^2=s_2^2+a^2\\\\ u_2^2=2^2+2^2\\\\ u_2^2=4+4\\\\ u_2^2=8\\\\ u_2=2\sqrt{2}[/tex]
Hence, the required value of h is 4, [tex]\rm s_2[/tex] is 2, and the value of [tex]\rm u_1[/tex] and [tex]\rm u_2[/tex] is [tex]2\sqrt{2}[/tex].
To know more about the right triangle click the link given below.
https://brainly.com/question/4364353