Find the derivative of the function
![Find the derivative of the function class=](https://us-static.z-dn.net/files/d57/e6e5f167089f5786dc55f9f3d12fdfd4.png)
Answer:
[tex]\displaystyle y' = \frac{9 \bigg[ 6x^\big{\frac{9}{4}} \sqrt{x^3} \sin (x^3) - \sin (\sqrt{x}) \bigg] }{2x^\big{\frac{1}{4}}}[/tex]
General Formulas and Concepts:
Calculus
Differentiation
Derivative Property [Multiplied Constant]: [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]
Derivative Property [Addition/Subtraction]: [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]
Derivative Rule [Chain Rule]: [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]
Integration
Integration Rule [Fundamental Theorem of Calculus 2]: [tex]\displaystyle \frac{d}{dx}[\int\limits^x_a {f(t)} \, dt] = f(x)[/tex]
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
Integration Property [Flipping Integral]: [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = -\int\limits^a_b {f(x)} \, dx[/tex]
Integration Property [Splitting Integral]: [tex]\displaystyle \int\limits^c_a {f(x)} \, dx = \int\limits^b_a {f(x)} \, dx + \int\limits^c_b {f(x)} \, dx[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle y = \int\limits^{x^3}_{\sqrt{x}} {9\sqrt{t} \sin (t)} \, dt[/tex]
Step 2: Differentiate
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration