Jasten
contestada

Use the quadratic formula to solve the equation. If necessary, round to the nearest hundredth.

x^2 - 5 = 4x

Respuesta :

aachen

Answer:

The final answers are x = 5 OR x = -1.

Step-by-step explanation:

Given the equation is x^2 -5 = 4x

Rewriting it in quadratic form as:- x^2 -4x -5 = 0.

a = 1, b = -4, c = -5.

Using Quadratic formula as follows:- x = ( -b ± √(b² -4ac) ) / (2a)

x = ( 4 ± √(16 -4*1*-5) ) / (2*1)

x = ( 4 ± √(16 +20) ) / (2)

x = ( 4 ± √(36) ) / (2)

x = ( 4 ± 6 ) / (2)

x = (4+6) / (2) OR x = (4-6) / (2)

x = 10/2 OR x = -2/2

x = 5 OR x = -1

Hence, final answers are x = 5 OR x = -1.

Answer:

Thus, the two root of the given quadratic equation  [tex]x^2-5=4x[/tex]  is 5 and -1 .

Step-by-step explanation:

Consider, the given Quadratic equation, [tex]x^2-5=4x[/tex]

This can be written as ,  [tex]x^2-4x-5=0[/tex]

We have to solve using quadratic formula,

For a given quadratic equation [tex]ax^2+bx+c=0[/tex] we can find roots using,

[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]  ...........(1)

Where,  [tex]\sqrt{b^2-4ac}[/tex] is the discriminant.

Here, a = 1 , b = -4 , c = -5

Substitute in (1) , we get,

[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]

[tex]\Rightarrow x=\frac{-(-4)\pm\sqrt{(-4)^2-4\cdot 1 \cdot (-5)}}{2 \cdot 1}[/tex]

[tex]\Rightarrow x=\frac{4\pm\sqrt{36}}{2}[/tex]

[tex]\Rightarrow x=\frac{4\pm 6}{2}[/tex]

[tex]\Rightarrow x_1=\frac{4+6}{2}[/tex] and [tex]\Rightarrow x_2=\frac{4-6}{2}[/tex]

[tex]\Rightarrow x_1=\frac{10}{2}[/tex] and [tex]\Rightarrow x_2=\frac{-2}{2}[/tex]

[tex]\Rightarrow x_1=5[/tex] and [tex]\Rightarrow x_2=-1[/tex]

Thus, the two root of the given quadratic equation [tex]x^2-5=4x[/tex] is 5 and -1 .

RELAXING NOICE
Relax