Respuesta :
Answer:
The final answers are x = 5 OR x = -1.
Step-by-step explanation:
Given the equation is x^2 -5 = 4x
Rewriting it in quadratic form as:- x^2 -4x -5 = 0.
a = 1, b = -4, c = -5.
Using Quadratic formula as follows:- x = ( -b ± √(b² -4ac) ) / (2a)
x = ( 4 ± √(16 -4*1*-5) ) / (2*1)
x = ( 4 ± √(16 +20) ) / (2)
x = ( 4 ± √(36) ) / (2)
x = ( 4 ± 6 ) / (2)
x = (4+6) / (2) OR x = (4-6) / (2)
x = 10/2 OR x = -2/2
x = 5 OR x = -1
Hence, final answers are x = 5 OR x = -1.
Answer:
Thus, the two root of the given quadratic equation [tex]x^2-5=4x[/tex] is 5 and -1 .
Step-by-step explanation:
Consider, the given Quadratic equation, [tex]x^2-5=4x[/tex]
This can be written as , [tex]x^2-4x-5=0[/tex]
We have to solve using quadratic formula,
For a given quadratic equation [tex]ax^2+bx+c=0[/tex] we can find roots using,
[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex] ...........(1)
Where, [tex]\sqrt{b^2-4ac}[/tex] is the discriminant.
Here, a = 1 , b = -4 , c = -5
Substitute in (1) , we get,
[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]
[tex]\Rightarrow x=\frac{-(-4)\pm\sqrt{(-4)^2-4\cdot 1 \cdot (-5)}}{2 \cdot 1}[/tex]
[tex]\Rightarrow x=\frac{4\pm\sqrt{36}}{2}[/tex]
[tex]\Rightarrow x=\frac{4\pm 6}{2}[/tex]
[tex]\Rightarrow x_1=\frac{4+6}{2}[/tex] and [tex]\Rightarrow x_2=\frac{4-6}{2}[/tex]
[tex]\Rightarrow x_1=\frac{10}{2}[/tex] and [tex]\Rightarrow x_2=\frac{-2}{2}[/tex]
[tex]\Rightarrow x_1=5[/tex] and [tex]\Rightarrow x_2=-1[/tex]
Thus, the two root of the given quadratic equation [tex]x^2-5=4x[/tex] is 5 and -1 .
