[tex]\bf ~~~~~~\textit{initial velocity} \\\\ \begin{array}{llll} ~~~~~~\textit{in feet} \\\\ h(t) = -16t^2+v_ot+h_o \end{array} \quad \begin{cases} v_o=\stackrel{}{\textit{initial velocity of the object}}\\\\ h_o=\stackrel{}{\textit{initial height of the object}}\\\\ h=\stackrel{}{\textit{height of the object at "t" seconds}} \end{cases} \\\\[-0.35em] ~\dotfill\\\\ h=-16t^2+\stackrel{\stackrel{v_o}{\downarrow }}{65}t[/tex]
now, take a look at the picture below, so for 2) and 3) is the vertex of this quadratic equation, 2) is the y-coordinate and 3) the x-coordinate.
[tex]\bf \textit{vertex of a vertical parabola, using coefficients} \\\\ h=\stackrel{\stackrel{a}{\downarrow }}{-16}t^2\stackrel{\stackrel{b}{\downarrow }}{+65}t\stackrel{\stackrel{c}{\downarrow }}{+0} \qquad \qquad \left(-\cfrac{ b}{2 a}~~~~ ,~~~~ c-\cfrac{ b^2}{4 a}\right) \\\\\\ \left( -\cfrac{65}{2(-16)}~~,~~0-\cfrac{65^2}{4(-16)} \right) \implies \left( \cfrac{65}{32}~,~0- \cfrac{4225}{-64}\right)[/tex]
[tex]\bf \left( \cfrac{65}{32}~,~0+ \cfrac{4225}{64}\right)\implies \left( \stackrel{seconds}{2\frac{1}{32}}~~,~~ \stackrel{feet~hight}{66\frac{1}{64}}\right)[/tex]