A typical jetliner lands at a speed of 146 mi/h and decelerates at the rate of (10.4 mi/h)/s. If the jetliner travels at a constant speed of 146 mi/h for 1.5 s after landing before applying the brakes, what is the total displacement of the jetliner between touchdown on the runway and coming to rest?

Respuesta :

jetliner is moving with speed 146 mi/h

now we will have

[tex]v= 146 \frac{1609 m}{3600 s}[/tex]

[tex]v = 65.25 m/s[/tex]

now if it moves with this speed for 1.5 s

so the displacement for above time

[tex]d_1 = 1.5(65.25) = 97.9 m[/tex]

now the deceleration of jet is given as

[tex]a = - 10.4 mi/h/s[/tex]

[tex]a = -(10.4)(\frac{1609 m}{3600 s})\frac{1}{s}[/tex]

[tex]a = - 4.65 m/s^2[/tex]

now by kinematics

[tex]v_f^2 - v_i^2 = 2ad[/tex]

[tex]0 - 65.25^2 = 2(-4.65)(d_2)[/tex]

[tex]d_2 = 457.8 m[/tex]

so total displacement is given as

[tex]d = d_1 + d_2[/tex]

[tex]d = 97.9 + 457.8 = 555.7 m[/tex]

so displacement will be 555.7 m

Solution

In this Question, We have given,

[tex]speed=146\frac{m}{h}[/tex]

[tex]speed=146\times 1609.34\frac{m}{3600s}[/tex]

[tex]speed=65.27\frac{m}{s}[/tex]

acceleration=[tex]10.4\frac{mi}{hs}[/tex]

acceleration=[tex]10.4\times 0.44704\frac{m}{s^2}[/tex]

acceleration=[tex]4.65\frac{m}{s^2}[/tex]

We will first calculate displacement of jetliner when speed is constant  

From second equation of motion we know that,

[tex]S=ut+\frac{at^2}{2}[/tex]................(1)

here, speed is constant therefore a=0

put values of u,t and a in equation (1)

[tex]S=65.27\frac{m}{s}\times 1.5S+\frac{0\times (1.5S)^2}{2}[/tex]

now calculate displacement S' when it is decelerating  

[tex]v^2=u^2-2aS'[/tex]

so [tex]0^2=(65.27\frac{m}{s})^2-2\times 4.65\frac{m}{s^2}\times S'[/tex]

[tex]9.29\frac{m}{s^2}\times S'=(65.27\frac{m}{s})^2[/tex]

[tex]S'=458.16m[/tex]

therefore total displacement=S+S'

[tex]Total Displacement=979.01m+458.16m[/tex]

[tex]Total Displacement=1437.17m[/tex]


RELAXING NOICE
Relax