Respuesta :

Answer:

The graph of h(x) is shown below.

Step-by-step explanation:

The given function is

[tex]h(x)=7\sin x[/tex]

The general form of sine function is

[tex]f(x)=a\sin(bx+c)+d[/tex]

Where, a is amplitude, b is period, c is phase shift and d is vertical shift.

So, the amplitude of the given function is 7, period is 1, phase shift is 0 and vertical shift is 0.

It means the minimum value of function is -7 and maximum value is 7.

Put x=0 in the given function.

[tex]h(x)=7\sin (0)=7(0)=0[/tex]

Put  [tex]x=-\frac{\pi}{2}[/tex] in the given function.

[tex]h(x)=7\sin (-\frac{\pi}{2})=-7(1)=-7[/tex]

Put  [tex]x=\frac{\pi}{2}[/tex] in the given function.

[tex]h(x)=7\sin (\frac{\pi}{2})=7(1)=7[/tex]

Therefore the points on the function are (0,0), [tex](-\frac{\pi}{2},-7),(\frac{\pi}{2},7)[/tex].

The graph of function is shown below.

Ver imagen DelcieRiveria
ACCESS MORE
EDU ACCESS
Universidad de Mexico