quadrilaterals part 1 introduction to quadrilaterals part 2 independent

Answer:
1. A. Graph below
1. B. Trapezoid
2. Interior angles are 63.3°, 147.9°, 27.13° and 121.6°.
Step-by-step explanation:
Ques 1: We are given that, for quadrilateral CONR,
CO is represented by the line [tex]y=9+2x[/tex] when [tex]-4\leq x\leq -3[/tex]
RN is represented by the line [tex]y-2x=-1[/tex] when [tex]-1\leq x\leq 2[/tex]
Part A). After plotting the lines, we will get the following graph.
Part B) Joining the end points, we see that, CONR is a trapezoid.
Ques 2: Since, we know,
The sum of the interior angles of a quadrilateral is 360°
So, we have,
[tex]\frac{3x}{7}+(3x-42)+x+(2x-5)=360[/tex]
i.e. [tex]\frac{3x}{7}+6x-47=360[/tex]
i.e. [tex]\frac{3x+42x}{7}=360+47[/tex]
i.e. [tex]\frac{45x}{7}=407[/tex]
i.e. [tex]x=\frac{407\times 7}{45}[/tex]
i.e. [tex]x=\frac{2849}{45}[/tex]
i.e. x= 63.3°
So, we have,
x= 63.3°
(3x-42)° = (3×63.3 - 42)° = (189.9-42)° = 147.9°
[tex]\frac{3x}{7}=\frac{3\times 63.3}{7}=\frac{189.9}{7}[/tex] = 27.13°
(2x-5)° = (2×63.3-5)° = (126.6-5)° = 121.6°
Thus, the interior angles are 63.3°, 147.9°, 27.13° and 121.6°.