Respuesta :

Answer:

1. A. Graph below

1. B. Trapezoid

2. Interior angles are 63.3°, 147.9°, 27.13° and 121.6°.

Step-by-step explanation:

Ques 1: We are given that, for quadrilateral CONR,

CO is represented by the line [tex]y=9+2x[/tex] when [tex]-4\leq x\leq -3[/tex]

RN is represented by the line [tex]y-2x=-1[/tex] when [tex]-1\leq x\leq 2[/tex]

Part A). After plotting the lines, we will get the following graph.

Part B) Joining the end points, we see that, CONR is a trapezoid.

Ques 2: Since, we know,

The sum of the interior angles of a quadrilateral is 360°

So, we have,

[tex]\frac{3x}{7}+(3x-42)+x+(2x-5)=360[/tex]

i.e. [tex]\frac{3x}{7}+6x-47=360[/tex]

i.e. [tex]\frac{3x+42x}{7}=360+47[/tex]

i.e. [tex]\frac{45x}{7}=407[/tex]

i.e. [tex]x=\frac{407\times 7}{45}[/tex]

i.e. [tex]x=\frac{2849}{45}[/tex]

i.e. x= 63.3°

So, we have,

x= 63.3°

(3x-42)° = (3×63.3 - 42)° = (189.9-42)° = 147.9°

[tex]\frac{3x}{7}=\frac{3\times 63.3}{7}=\frac{189.9}{7}[/tex] = 27.13°

(2x-5)° = (2×63.3-5)° = (126.6-5)° = 121.6°

Thus, the interior angles are 63.3°, 147.9°, 27.13° and 121.6°.

Ver imagen wagonbelleville
RELAXING NOICE
Relax