Respuesta :

ANSWER

The correct answer is C

[tex] \sin ( \theta) = - \frac{ \sqrt{33} }{7} , \tan ( \theta) = - \frac{ \sqrt{33} }{ 4 } [/tex]



EXPLANATION

It was given that,


[tex] \cos( \theta) = \frac{4}{7} [/tex]


and

[tex] \csc( \theta) < 0[/tex]

This means that,


[tex] \theta[/tex]
is in the fourth quadrant.


We use the identity,

[tex] \cos ^{2} ( \theta) + \sin ^{2} ( \theta) = 1[/tex]


This implies that,

[tex] ( { \frac{4}{7} })^{2} + \sin ^{2} ( \theta) = 1[/tex]


[tex] { \frac{16}{49} } + \sin ^{2} ( \theta) = 1[/tex]


[tex] \sin ^{2} ( \theta) = 1 - { \frac{16}{49} }[/tex]



[tex] \sin ^{2} ( \theta) = { \frac{33}{49} }[/tex]


[tex] \sin ( \theta) = \pm \sqrt{{ \frac{33}{49} }} [/tex]


[tex] \sin ( \theta) = \pm \frac{ \sqrt{33} }{7} [/tex]


But

[tex] \csc( \theta) < 0[/tex]


This implies that,


[tex] \sin ( \theta) = - \frac{ \sqrt{33} }{7} [/tex]

[tex] \tan ( \theta) = \frac{ \sin( \theta) }{ \cos( \theta) } [/tex]
[tex] \tan ( \theta) = \frac{ - \frac{ \sqrt{33} }{7} }{ \frac{4}{7} } [/tex]


[tex] \tan ( \theta) = - \frac{ \sqrt{33} }{ 4 } [/tex]

Answer:

C.

Step-by-step explanation:

ACCESS MORE
EDU ACCESS
Universidad de Mexico