Respuesta :
Answer:
Step-by-step explanation:
Given: The triangle with coordinate A(4,6), B(2,-2) and C(-2,-4). D is the mid point of AB and E is the mid point of AC.
To prove: DE is parallel to BC.
Construction: Join DE.
Proof: If we prove the basic proportionality theorem that is [tex]\frac{AD}{DB}=\frac{AE}{EC}[/tex], then it proves that DE is parallel to BC.
Now, Mid Point D has coordinates=[tex](\frac{4+2}{2},\frac{6-2}{2})=(3,2)[/tex] and Mid Point E has coordinates=[tex](\frac{4-2}{2},\frac{6-4}{2})=(1,1)[/tex]
Now, AD= [tex]\sqrt{(4-3)^{2}+(6-2)^{2}}=\sqrt{17}[/tex]
DB=[tex]\sqrt{(3-2)^{2}+(2+2)^{2}}=\sqrt{17}[/tex]
AE=[tex]\sqrt{(4-1)^{2}+(6-1)^{2}}=\sqrt{34}[/tex]
EC=[tex]\sqrt{(1+2)^{2}+(1+4)^{2}}=\sqrt{34}[/tex]
Now, [tex]\frac{AD}{DB}=\frac{AE}{EC}[/tex]
=[tex]\frac{\sqrt{17}}{\sqrt{17}}=\frac{\sqrt{34}}{\sqrt{34}}=\frac{1}{1}[/tex]
Hence, [tex]\frac{AD}{DB}=\frac{AE}{EC}[/tex]
Thus, By basic proportionality theorem, DE is parallel to BC.
Step-by-step explanation:
If DE and BC are parallel, then they have the same slope.
We have
A(4, 6), B(2, -2), C(-2, -4)
The formula of a midpoint:
[tex]\left(\dfrac{x_1+x_2}{2},\ \dfrac{y_1+y_2}{2}\right)[/tex]
D is the midpoint of AB, and E is a midpoint of AC.
Calculate the coordinateso fo D and E:
[tex]D\left(\dfrac{4+2}{2},\ \dfrac{6+(-2)}{2}\right)\to D\left(\dfrac{6}{2},\ \dfrac{4}{2}\right)\to D(3,\ 2)\\\\E\left(\dfrac{4+(-2)}{2},\ \dfrac{6+(-4)}{2}\right)\to E\left(\dfrac{2}{2},\ \dfrac{2}{2}\right)\to E(1,\ 1)[/tex]
The formula of a slope:
[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
Calculate the formula of a DE and BC:
[tex]DE:\\\\m_{DE}=\dfrac{2-1}{3-1}=\dfrac{1}{2}\\\\BC:\\\\m_{BC}=\dfrac{-4-(-2)}{-2-2}=\dfrac{-4+2}{-4}=\dfrac{-2}{-4}=\dfrac{1}{2}[/tex]
The slope DE and the slope BC are the same.
Therefore DE is parallel to BC.