Respuesta :
Answer:
[tex]4\sqrt{3}+4i[/tex]
Step-by-step explanation:
[tex]8(\cos 30^\circ + i \sin 30^\circ) = 8 \frac{\sqrt{3}}{2}+i8\frac{1}{2}=4\sqrt{3}+4i[/tex]
Answer:
[tex]4\sqrt{3} +4i[/tex]
Step-by-step explanation:
Use the Euler's Formula, which is given by:
[tex]r e^{i \theta} = r(cos(\theta)+i sin(\theta))[/tex]
Where:
[tex]a=rcos(\theta)\\b=rsin(\theta)\\\\tan(\theta)=\frac{b}{a}[/tex]
From the problem, you can see:
[tex]r=8\\\theta=30^{\circ}[/tex]
So:
[tex]a=8*cos(30)=4 \sqrt{3} \approx6.928\\b=8*sin(30)=4[/tex]
Therefore, the complex number in its rectangular form is:
[tex]4\sqrt{3} +4i[/tex]