Respuesta :

Answer:

[tex]4\sqrt{3}+4i[/tex]

Step-by-step explanation:

[tex]8(\cos 30^\circ + i \sin 30^\circ) = 8 \frac{\sqrt{3}}{2}+i8\frac{1}{2}=4\sqrt{3}+4i[/tex]

Answer:

[tex]4\sqrt{3} +4i[/tex]

Step-by-step explanation:

Use the Euler's Formula, which is given by:

[tex]r e^{i \theta} = r(cos(\theta)+i sin(\theta))[/tex]

Where:

[tex]a=rcos(\theta)\\b=rsin(\theta)\\\\tan(\theta)=\frac{b}{a}[/tex]

From the problem, you can see:

[tex]r=8\\\theta=30^{\circ}[/tex]

So:

[tex]a=8*cos(30)=4 \sqrt{3} \approx6.928\\b=8*sin(30)=4[/tex]

Therefore, the complex number in its rectangular form is:

[tex]4\sqrt{3} +4i[/tex]