I need help on this problem
![I need help on this problem class=](https://us-static.z-dn.net/files/dd3/822d2d1f133f7382782de28cfce30ec0.png)
I've redrawn and labeled the given image. Angles [tex]x'[/tex] are supplementary to angles [tex]x[/tex]; that is, for any angle [tex]x[/tex],
[tex]x+x'=180^\circ[/tex]
It's also useful to know that for any convex [tex]n[/tex]-gon, the sum of its interior angles is
[tex](n-2)\times180^\circ[/tex]
Notice that the angle supplementary to the one labeled [tex]b[/tex] is congruent to the angle supplementary to the one labeled [tex]c[/tex]; this means that [tex]b=c[/tex].
So we have
[tex]\begin{cases}b=c\\a'+e+40^\circ+90^\circ=360^\circ\\a+b'+e'=180^\circ\\a'+b+\angle(1)+d+88^\circ=540^\circ\\b'+f'+\angle(1)'=180^\circ\\e+b+f+c+g=540^\circ\\c'+f'+h'=180^\circ\\\angle(1)+f+h+76^\circ+90^\circ=540^\circ\\g'+c'+\angle(2)'=180^\circ\\a+\angle(2)+c+h+58^\circ=540^\circ\end{cases}[/tex]
Solving the system will give you
[tex]a=61^\circ,b=130^\circ,c=130^\circ,d=59^\circ,e=111^\circ,f=86^\circ,g=83^\circ,h=144^\circ[/tex]