Respuesta :

I've redrawn and labeled the given image. Angles [tex]x'[/tex] are supplementary to angles [tex]x[/tex]; that is, for any angle [tex]x[/tex],

[tex]x+x'=180^\circ[/tex]

It's also useful to know that for any convex [tex]n[/tex]-gon, the sum of its interior angles is

[tex](n-2)\times180^\circ[/tex]

Notice that the angle supplementary to the one labeled [tex]b[/tex] is congruent to the angle supplementary to the one labeled [tex]c[/tex]; this means that [tex]b=c[/tex].

So we have

[tex]\begin{cases}b=c\\a'+e+40^\circ+90^\circ=360^\circ\\a+b'+e'=180^\circ\\a'+b+\angle(1)+d+88^\circ=540^\circ\\b'+f'+\angle(1)'=180^\circ\\e+b+f+c+g=540^\circ\\c'+f'+h'=180^\circ\\\angle(1)+f+h+76^\circ+90^\circ=540^\circ\\g'+c'+\angle(2)'=180^\circ\\a+\angle(2)+c+h+58^\circ=540^\circ\end{cases}[/tex]

Solving the system will give you

[tex]a=61^\circ,b=130^\circ,c=130^\circ,d=59^\circ,e=111^\circ,f=86^\circ,g=83^\circ,h=144^\circ[/tex]

Ver imagen LammettHash
ACCESS MORE