Limit
x~0 (√x+4)-2
--------
X
Please solve it in detail
![Limit x0 x42 XPlease solve it in detail class=](https://us-static.z-dn.net/files/dda/59ede3dbdbdfda40b54324a7588ba15d.jpg)
Rationalize the numerator:
[tex]\dfrac{\sqrt{x+4}-2}x\cdot\dfrac{\sqrt{x+4}+2}{\sqrt{x+4}+2}=\dfrac{(\sqrt{x+4})^2-2^2}{x(\sqrt{x+4}+2)}=\dfrac x{x(\sqrt{x+4}+2)}=\dfrac1{\sqrt{x+4}+2}[/tex]
This is continuous at [tex]x=0[/tex], so we can evaluate the limit directly by substitution:
[tex]\displaystyle\lim_{x\to0}\frac{\sqrt{x+4}-2}x=\lim_{x\to0}\frac1{\sqrt{x+4}+2}=\frac1{\sqrt4+2}=\frac14[/tex]