Respuesta :
Answer: 8
Step-by-step explanation:
[tex]1250^{\dfrac{3}{4}}=\sqrt[4]{1250^3} \\\\= \sqrt[4]{1250\cdot 1250\cdot1250} \\\\= \sqrt[4]{5^4(2)\cdot 5^4(2)\cdot5^4(2)} \\\\=5\cdot5\cdot5\sqrt[4]{2^3} \\\\=125\sqrt[4]{8}[/tex]
Answer:
The value remains under the radical is 8.
Step-by-step explanation:
Given : When 1250 to the 3/4 power is written in simplest radical form.
To find : Which value remains under the radical?
Solution :
The expression is written as [tex]1250^{\frac{3}{4}}[/tex]
Applying property,
[tex]a^{\frac{x}{n}}=n\sqrt{a^x}[/tex]
So, [tex]1250^{\frac{3}{4}}[/tex]
[tex]=\sqrt[4]{1250^3}[/tex]
[tex]=\sqrt[4]{1250\times 1250\times 1250}[/tex]
[tex]=\sqrt[4]{5^4(2)\times 5^4(2)\times 5^4(2)}[/tex]
[tex]=5\times 5\times 5\sqrt[4]{2^3}[/tex]
[tex]=125\sqrt[4]{8}[/tex]
Therefore, The value remains under the radical is 8.