Answer : v = 14.28 m/s
Explanation :
It is given that,
mass of squirrel, [tex]m=570\ g[/tex]
Surface area, [tex]A=880\ cm^2=88\times 10^{-3}[/tex]
Height, [tex]h=5.2\ m[/tex]
Terminal velocity is given by :
[tex]v_t=\sqrt{\dfrac{2mg}{\rho AC}[/tex]
where, [tex]\rho[/tex] is density of fluid which is falling and it is given by
[tex]\rho=\dfrac{m}{V}[/tex]
since, [tex]volume=area\times height[/tex]
so, [tex]\rho=\dfrac{0.57\ Kg}{0.088\ m^2\times 5.2\ m}[/tex]
[tex]\rho=1.24\ Kg/m^3[/tex]
A is the surface area of squirrel.
C is the drag coefficient.
The surface area facing the fluid is given by : [tex]A_f=\dfrac{0.088\ m^2}{2}=0.044\ m^2[/tex]
so, terminal velocity is :
[tex]v_t=\sqrt{\dfrac{2\times 0.57\ Kg\times 9.8\ m/s^2}{1.24\ Kg/m^3\times 0.044\ m^2\times 1}}[/tex]
[tex]v_t=\sqrt{ 204}[/tex]
[tex]v_t=14.28\ m/s[/tex]
So, the terminal velocity of squirrel is 14.28 m/s.