Respuesta :

Answer:

the answer is c

Step-by-step explanation:


Answer:

Option D.

Step-by-step explanation:

The vertices of given triangle are (2,-2), (5,-2) and (2,2).

Distance formula:

[tex]D=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Using distance formula, the length of sides of given triangle are

[tex]\sqrt{\left(5-2\right)^2+\left(-2-\left(-2\right)\right)^2}=3[/tex]

[tex]\sqrt{\left(2-5\right)^2+\left(2-\left(-2\right)\right)^2}=5[/tex]

[tex]\sqrt{\left(2-2\right)^2+\left(2-\left(-2\right)\right)^2}=4[/tex]

The sides of similar triangles are proportional.

Similarly, find the sides for each option.

The vertices of option D are

(2,-2), (8,-2), (2,6)

Using distance formula, the length of sides of this triangle are

[tex]\sqrt{\left(8-2\right)^2+\left(-2-\left(-2\right)\right)^2}=6[/tex]

[tex]\sqrt{\left(2-8\right)^2+\left(6-\left(-2\right)\right)^2}=10[/tex]

[tex]\sqrt{\left(2-2\right)^2+\left(6-\left(-2\right)\right)^2}=8[/tex]

It is noticed that

[tex]\dfrac{6}{3}=\dfrac{10}{5}=\dfrac{8}{4}=2[/tex]

Since the sides of given triangle and side of triangle in option D are proportional. Therefore, the correct option is D.

ACCESS MORE