Answer: It will take 3 days for half of a 10 g sample to decay.
Explanation:
Half-life of sample of an isotope X = 3 days
[tex]\lambda=\frac{0.693}{t_{\frac{1}{2}}}=\frac{0.693}{3 days}=0.231 day^{-1}[/tex]
[tex]N=N_o\times e^{-\lambda t}[/tex]
[tex]\lnN=-\lambda t\lnN_o[/tex]
Sample decayed = [tex]\frac{N_o}{2}=\frac{10 g}{2 g}=5 g[/tex]
N=[tex]N^o-\text{sample decayed}=10 g-5 g=5 g[/tex], time = t
[tex]\ln[5 g]=-0.231 day^{-1}\times t\ln[10][/tex]
[tex]\ln[\frac{5}{10}]=-0.231\times t[/tex]
[tex]\ln\frac{1}{2}=-0.693=-0.231\times t[/tex]
t = 3 days
It will take 3 days for half of a 10 g sample to decay.